Modular small RNA drives pathogen emergence

Author:

Balasubramanian Deepak,Almagro-Moreno SalvadorORCID

Abstract

ABSTRACTPathogen emergence is a poorly understood complex phenomenon. To date, the molecular mechanisms that allow strains within a bacterial population to emerge as human pathogens remain mostly enigmatic. We recently uncovered that toxigenicVibrio choleraeencode preadaptations to host colonization, what we term virulence adaptive polymorphisms (VAPs), however, the molecular mechanisms driving them are not known.ompUis a VAP-encoding gene that is associated with the production of the major outer membrane porin OmpU. Here, we show that theompUORF also encodes a modular small RNA overlapping its 3’ terminus that plays a major role inV. choleraephysiology. We determined that the OmpU-encoded sRNA (OueS) strongly suppresses biofilm formation, a phenotype that is essential for host intestinal colonization, via repression of iron uptake. OueS controls over 84% of the genes regulated by ToxR, a major virulence regulator, and plays an integral role during the infection process. We demonstrate that OueS is critical for intestinal colonization and its bimodular nature dictates the virulence potential ofV. cholerae. Overall, our study reveals specific molecular mechanisms leading to the emergence of pathogenic traits in bacteria unveiling the hidden genetics associated with this process. We propose a scenario where a limited number of modular genes could explain the emergence of novel phenotypic traits in biological systems.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3