Green Heart Louisville: intra-urban, hyperlocal land-use regression modeling of nitrogen oxides and ozone

Author:

Prathibha Pradeep,Yeager Raymond,Bhatnagar Aruni,Turner Jay

Abstract

AbstractExposure to urban air pollution is linked to increased mortality from cardiopulmonary causes. Urban areas juxtapose large numbers of residences and workplaces with near-road environments, exacerbating traffic-related air pollution (TRAP) exposure. TRAP is the primary source of variability in intraurban air quality, but continuous regulatory monitoring stations lack the spatial resolution to detect fine-scale pollutant patterns that recent studies using long-term, resource-intensive mobile measurements have established as persistent and associated with higher risk of cardiovascular events. This work evaluates a low-cost, fixed-site approach to characterizinglong-term, hyperlocal exposure to oxides of nitrogen (including NO2, a common surrogate for TRAP) as part of Green Heart Louisville, a prospective cohort study examining linkages between urban vegetation, local air quality, and cardiovascular health.We used a fixed 60-site network of Ogawa passive samplers in a 12 km2section of Louisville, KY, to measure two-week integrated NO2, NOx(NO + NO2), and O3mixing ratios nominally every two months between May 2018-March 2021. Seasonal NOxaverages were 2.5-fold higher during winter than in summer, and annual average NO (calculated by difference in NOxand NO2) and NO2ranged from 4-21 ppb and 5-12 ppb, respectively. NO increased 3-to-5-fold within 150 m of highways or major arterial roads and 2-to-3-fold near parking lots. While both NO and NO2were elevated in near-road environments, the corresponding O3was depressed, consistent with titration by NO.We developed land-use regression models for annual average NO, NO2, and NOxusing parameters of proximity (distance to nearest road type, restaurant, traffic signal), cumulative occurrence (length of roads, number of restaurants and traffic lights, all in buffers of up to 500 m in 50-m increments), and greenness (normalized difference vegetative index (NDVI)). Adjusted spatial variability explained by the models were 70% (p<0.05), 67% (p<0.05), and 75% (p<0.01) for NO, NO2, and NOx, respectively. Common predictors were distances to the nearest restaurant and road as well as total length of roads within 350 m. Only one greenness metric was significant: mean NDVI within 50 m was negatively associated (p=0.02) with NO2. We plan to use these hyperlocal models to estimate residential-level exposures of the clinical study participants.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3