Adaptive dynamics of memory-1 strategies in the repeated donation game

Author:

LaPorte PhilipORCID,Hilbe ChristianORCID,Nowak Martin A.

Abstract

AbstractSocial interactions often take the form of a social dilemma: collectively, individuals fare best if everybody cooperates, yet each single individual is tempted to free ride. Social dilemmas can be resolved when individuals interact repeatedly. Repetition allows individuals to adopt reciprocal strategies which incentivize cooperation. The most basic model to study reciprocity is the repeated donation game, a variant of the repeated prisoner’s dilemma. Two players interact over many rounds, in which they repeatedly decide whether to cooperate or to defect. To make their decisions, they need a strategy that tells them what to do depending on the history of previous play. Memory-1 strategies depend on the previous round only. Even though memory-1 strategies are among the most elementary strategies of reciprocity, their evolutionary dynamics has been difficult to study analytically. As a result, most previous work relies on simulations. Here, we derive and analyze their adaptive dynamics. We show that the four-dimensional space of memory-1 strategies has an invariant three-dimensional subspace, generated by the memory-1 counting strategies. Counting strategies record how many players cooperated in the previous round, without considering who cooperated. We give a partial characterization of adaptive dynamics for memory-1 strategies and a full characterization for memory-1 counting strategies.Author summaryDirect reciprocity is a mechanism for evolution of cooperation based on the repeated interaction of the same players. In the most basic setting, we consider a game between two players and in each round they choose between cooperation and defection. Hence, there are four possible outcomes: (i) both cooperate; (ii) I cooperate, you defect; (ii) I defect, you cooperate; (iv) both defect. A memory-1 strategy for playing this game is characterized by four quantities which specify the probabilities to cooperate in the next round depending on the outcome of the current round. We study evolutionary dynamics in the space of all memory-1 strategies. We assume that mutant strategies are generated in close proximity to the existing strategies, and therefore we can use the framework of adaptive dynamics, which is deterministic.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3