Molecular pathology of acute respiratory distress syndrome, mechanical ventilation and abnormal coagulation in severe COVID-19

Author:

Soulé Antoine,Ma William,Liu Katelyn Yixiu,Allard Catherine,Qureshi Salman,Tremblay KarineORCID,Emad AminORCID,Rousseau SimonORCID

Abstract

AbstractSystemic inflammation in critically ill patients can lead to serious consequences such as acute respiratory distress syndrome (ARDS), a condition characterized by the presence of lung inflammation, edema, and impaired gas exchange, associated with poor survival. Understanding molecular pathobiology is essential to improve critical care of these patients. To this end, we use multimodal profiles of SARS-CoV-2 infected hospitalized participants to the Biobanque Québécoise de la COVID-19 (BQC-19) to characterize endophenotypes associated with different degrees of disease severity. Proteomic, metabolomic, and genomic characterization supported a role for neutrophil-associated procoagulant activity in severe COVID-19 ARDS that is inversely correlated with sphinghosine-1 phosphate plasma levels. Fibroblast Growth Factor Receptor (FGFR) and SH2-containing transforming protein 4 (SHC4) signaling were identified as molecular features associated with endophenotype 6 (EP6). Mechanical ventilation in EP6 was associated with alterations in lipoprotein metabolism. These findings help define the molecular mechanisms related to specific severe outcomes, that can be used to identify early unfavorable clinical trajectories and treatable traits to improve the survival of critically ill patients.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3