PandoraRLO: DQN and Graph convolution based method for optimized ligand pose

Author:

Jose JustinORCID,Alam UjjainiORCID,Singh DivyeORCID,Jatana NidhiORCID,Arora PoojaORCID

Abstract

AbstractPredicting how proteins interact with small molecules is a complex and challenging task in the field of drug discovery. Two important aspects in this are shape complementarity and inter molecular interactions which are highly driven by the binding site and the ultimate pose of the ligand in which it interacts with the protein. Various state of the art methods exist which provide a range of ligand poses that are potentially a good fit for a given specific receptor, these are usually compute intensive and expensive. In this study, we have designed a method that provides a single optimized ligand pose for a specific receptor. The method is based on reinforcement learning where when exposed to a diverse protein ligand data set the agent is able to learn the underlying complex biochemistry of the protein ligand pair and provide an optimized pair. As a first study on usage of reinforcement learning for optimized ligand pose, the PandoraRLO model is able to predict pose within a range of 0.5Å to 4Å for a large number of test complexes. This indicates the potential of reinforcement learning in uncovering the inherent patterns of protein-ligand pair in 3D space.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3