Robust neural tracking of linguistic speech representations using a convolutional neural network

Author:

Puffay CorentinORCID,Vanthornhout JonasORCID,Gillis MarliesORCID,Accou BerndORCID,Van hamme HugoORCID,Francart TomORCID

Abstract

AbstractObjectiveWhen listening to continuous speech, populations of neurons in the brain track different features of the signal. Neural tracking can be measured by relating the electroencephalography (EEG) and the speech signal. Recent studies have shown a significant contribution of linguistic features over acoustic neural tracking using linear models. However, linear models cannot model the nonlinear dynamics of the brain. To overcome this, we use a convolutional neural network (CNN) that relates EEG to linguistic features using phoneme or word onsets as a control and has the capacity to model non-linear relations.ApproachWe integrate phoneme- and word-based linguistic features (phoneme surprisal, cohort entropy, word surprisal and word frequency) in our nonlinear CNN model and investigate if they carry additional information on top of lexical features (phoneme and word onsets). We then compare the performance of our nonlinear CNN with that of a linear encoder and a linearized CNN.Main resultsFor the non-linear CNN, we found a significant contribution of cohort entropy over phoneme onsets and of word surprisal and word frequency over word onsets. Moreover, the non-linear CNN outperformed the linear baselines.SignificanceMeasuring coding of linguistic features in the brain is important for auditory neuroscience research and applications that involve objectively measuring speech understanding. With linear models, this is measurable, but the effects are very small. The proposed non-linear CNN model yields larger differences between linguistic and lexical models and, therefore, could show effects that would otherwise be unmeasurable and may, in the future, lead to improved within-subject measures and shorter recordings.Index TermsEEG decoding, speech processing, CNN, linguistics.

Publisher

Cold Spring Harbor Laboratory

Reference38 articles.

1. Martın Abadi , Ashish Agarwal , Paul Barham , Eugene Brevdo , Zhifeng Chen , Craig Citro , Greg Corrado , Andy Davis , Jeffrey Dean , Matthieu Devin , Sanjay Ghemawat , Ian Goodfellow , Andrew Harp , Geoffrey Irving , Michael Isard , Yangqing Jia , Rafal Jozefowicz , Lukasz Kaiser , Manjunath Kudlur , Josh Levenberg , Dan Mane , Rajat Monga , Sherry Moore , Derek Murray , Chris Olah , Mike Schuster , Jonathon Shlens , Benoit Steiner , Ilya Sutskever , Kunal Talwar , Paul Tucker , Vincent Vanhoucke , Vijay Vasudevan , Fernanda Viegas , Oriol Vinyals , Pete Warden , Martin Wattenberg , Martin Wicke , Yuan Yu , and Xiaoqiang Zheng . Tensorflow: Large-scale machine learning on heterogeneous distributed systems. 2015. URL http://download.tensorflow.org/paper/whitepaper2015.pdf.

2. Bernd Accou , Mohammad Jalilpour-Monesi , Hugo Van hamme , and Tom Francart . Predicting speech intelligibility from eeg using a dilated convolutional network. ArXiv, abs/2105.06844, 2021a.

3. Bernd Accou , Mohammad Jalilpour-Monesi , Jair Montoya-Martınez , Hugo Van hamme , and Tom Francart . Modeling the relationship between acoustic stimulus and eeg with a dilated convolutional neural network. 2020 28th European Signal Processing Conference (EUSIPCO), pages 1175–1179, 2021b.

4. Auditory Brainstem Response to Complex Sounds Predicts Self-Reported Speech-in-Noise Performance

5. Learning Subject-Invariant Representations from Speech-Evoked EEG Using Variational Autoencoders

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3