Keypoint-MoSeq: parsing behavior by linking point tracking to pose dynamics

Author:

Weinreb CalebORCID,Pearl JonahORCID,Lin SherryORCID,Osman Mohammed Abdal MoniumORCID,Zhang Libby,Annapragada Sidharth,Conlin Eli,Hoffman Red,Makowska Sofia,Gillis Winthrop F.ORCID,Jay MayaORCID,Ye ShaokaiORCID,Mathis AlexanderORCID,Mathis Mackenzie WeygandtORCID,Pereira TalmoORCID,Linderman Scott W.ORCID,Datta Sandeep RobertORCID

Abstract

AbstractKeypoint tracking algorithms have revolutionized the analysis of animal behavior, enabling investigators to flexibly quantify behavioral dynamics from conventional video recordings obtained in a wide variety of settings. However, it remains unclear how to parse continuous keypoint data into the modules out of which behavior is organized. This challenge is particularly acute because keypoint data is susceptible to high frequency jitter that clustering algorithms can mistake for transitions between behavioral modules. Here we present keypoint-MoSeq, a machine learning-based platform for identifying behavioral modules (“syllables”) from keypoint data without human supervision. Keypoint-MoSeq uses a generative model to distinguish keypoint noise from behavior, enabling it to effectively identify syllables whose boundaries correspond to natural sub-second discontinuities inherent to mouse behavior. Keypoint-MoSeq outperforms commonly used alternative clustering methods at identifying these transitions, at capturing correlations between neural activity and behavior, and at classifying either solitary or social behaviors in accordance with human annotations. Keypoint-MoSeq therefore renders behavioral syllables and grammar accessible to the many researchers who use standard video to capture animal behavior.

Publisher

Cold Spring Harbor Laboratory

Reference54 articles.

1. Tinbergen, N. The study of instinct. (Clarendon Press, 1951).

2. Dawkins, R. in Growing points in ethology. (Cambridge U Press, 1976).

3. The functional organization of behaviour

4. SLEAP: A deep learning system for multi-animal pose tracking

5. DeepLabCut: markerless pose estimation of user-defined body parts with deep learning;Nature Publishing Group,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3