Quantum algorithm for position weight matrix matching

Author:

Miyamoto Koichi,Yamamoto Naoki,Sakakibara Yasubumi

Abstract

We propose two quantum algorithms for a problem in bioinformatics, position weight matrix (PWM) matching, which aims to find segments (sequence motifs) in a biological sequence such as DNA and protein that have high scores defined by the PWM and are thus of informational importance related to biological function. The two proposed algorithms, the naive iteration method and the Monte-Carlo-based method, output matched segments, given the oracular accesses to the entries in the biological sequence and the PWM. The former uses quantum amplitude amplification (QAA) for sequence motif search, resulting in the query complexity scaling on the sequence lengthn, the sequence motif lengthmand the number of the PWMsKas, which means speedup over existing classical algorithms with respect tonandK. The latter also uses QAA, and further, quantum Monte Carlo integration for segment score calculation, instead of iteratively operating quantum circuits for arithmetic in the naive iteration method; then it provides the additional speedup with respect tomin some situation. As a drawback, these algorithms use quantum random access memories and their initialization takesO(n) time. Nevertheless, our algorithms keep the advantage especially when we search matches in a sequence for many PWMs in parallel.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3