Abstract
AbstractFast synaptic inhibition determines neuronal response properties in the mammalian brain and is mediated by chloride-permeable ionotropic GABA-A receptors (GABAARs). Despite their fundamental role, it is still not known how GABAARs signal in the intact brain. Here we usein vivogramicidin recordings to investigate synaptic GABAAR signaling in mouse cortical pyramidal neurons under conditions that preserve native transmembrane chloride gradients. In anaesthetized cortex, synaptic GABAARs exert classic hyperpolarizing effects. In contrast, GABAAR-mediated synaptic signaling in awake cortex is found to be predominantly shunting. This is due to more depolarized GABAAR equilibrium potentials (EGABAAR), which are shown to result from the high levels of synaptic activity that characterize awake cortical networks. The EGABAARobserved in awake cortex can facilitate the decoupling of local networks, which improves the ability of the network to discriminate stimuli. Our findings therefore suggest that GABAAR signaling adapts to optimize cortical functions.
Publisher
Cold Spring Harbor Laboratory
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献