Author:
Ding Yage,Tous Cristina,Choi Jaehoon,Chen Jingyao,Wong Wilson W.
Abstract
SUMMARYRNA plays an indispensable role in mammalian cell functions. Cas13, a class of RNA-guided ribonuclease, is a flexible tool for modifying and regulating coding and non-coding RNAs, with enormous potential for creating new cell functions. However, the lack of control over Cas13 activity has limited its cell engineering capability. Here, we present the CRISTAL (Control ofRNA with InducibleSpliTCAs13 Orthologs and ExogenousLigands) platform. CRISTAL is powered by a collection (10 total) of orthogonal split inducible Cas13s that can be turned ON or OFF via small molecules in multiple cell types, providing precise temporal control. Also, we engineered Cas13 logic circuits that can respond to endogenous signaling and exogenous small molecule inputs. Furthermore, the orthogonality, low leakiness, and high dynamic range of our inducible Cas13d and Cas13b enable the design and construction of a robust incoherent feedforward loop, leading to near-perfect and tunable adaptation response. Finally, using our inducible Cas13s, we achieve simultaneous multiplexed control of multiple genesin vitroand in mice. Together, our CRISTAL design represents a powerful platform for precisely regulating RNA dynamics to advance cell engineering and elucidate RNA biology.
Publisher
Cold Spring Harbor Laboratory
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献