Lysyl oxidase regulates epithelial differentiation and barrier integrity in eosinophilic esophagitis

Author:

Sasaki MasaruORCID,Hara TakeoORCID,Wang Joshua X.ORCID,Zhou YusenORCID,Kennedy Kanak V.,Umeweni Nicole N.,Alston Maiya A.,Spergel Zachary C.,Nakagawa Ritsu,Mcmillan Emily A.,Whelan Kelly A.,Karakasheva Tatiana A.ORCID,Hamilton Kathryn E.ORCID,Ruffner Melanie A.ORCID,Muir Amanda B.ORCID

Abstract

AbstractBackground & AimsEpithelial disruption in eosinophilic esophagitis (EoE) encompasses both impaired differentiation and diminished barrier integrity. We have shown that lysyl oxidase (LOX), a collagen cross-linking enzyme, is upregulated in the esophageal epithelium in EoE. However, the functional roles of LOX in the esophageal epithelium remains unknown.MethodsWe investigated roles for LOX in the human esophageal epithelium using 3-dimensional organoid and air-liquid interface cultures stimulated with interleukin (IL)-13 to recapitulate the EoE inflammatory milieu, followed by single-cell RNA sequencing, quantitative reverse transcription-polymerase chain reaction, western blot, histology, and functional analyses of barrier integrity.ResultsSingle-cell RNA sequencing analysis on patient-derived organoids revealed that LOX was induced by IL-13 in differentiated cells. LOX-overexpressing organoids demonstrated suppressed basal and upregulated differentiation markers. Additionally, LOX overexpression enhanced junctional protein genes and transepithelial electrical resistance. LOX overexpression restored the impaired differentiation and barrier function, including in the setting of IL-13 stimulation. Transcriptome analyses on LOX-overexpressing organoids identified enriched bone morphogenetic protein (BMP) signaling pathway compared to wild type organoids. Particularly, LOX overexpression increased BMP2 and decreased BMP antagonist follistatin. Finally, we found that BMP2 treatment restored the balance of basal and differentiated cells.ConclusionsOur data support a model whereby LOX exhibits non-canonical roles as a signaling molecule important for epithelial homeostasis in the setting of inflammation via activation of BMP pathway in esophagus. The LOX/BMP axis may be integral in esophageal epithelial differentiation and a promising target for future therapies.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Epithelial-Fibroblast Crosstalk in Eosinophilic Esophagitis;Cellular and Molecular Gastroenterology and Hepatology;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3