Human Cytomegalovirus Induces Significant Structural and Functional Changes in Terminally Differentiated Human Cortical Neurons

Author:

Adelman Jacob W.,Rosas-Rogers Suzette,Schumacher Megan L.,Mokry Rebekah L.,Terhune Scott S.,Ebert Allison D.

Abstract

ABSTRACTHuman cytomegalovirus (HCMV) is a highly prevalent viral pathogen that typically presents asymptomatically in healthy individuals despite lifelong latency. However, in 10-15% of congenital cases, this beta-herpesvirus demonstrates direct effects on the central nervous system, including microcephaly, cognitive/learning delays, and hearing deficits. HCMV has been widely shown to infect neural progenitor cells, but the permissiveness of fully differentiated neurons to HCMV is controversial and chronically understudied, despite potential associations between HCMV infection with neurodegenerative conditions. Using a model system representative of the human forebrain, we demonstrate that induced pluripotent stem cell (iPSC)-derived, excitatory glutamatergic and inhibitory GABAergic neurons are fully permissive to HCMV, demonstrating complete viral replication, competent virion production, and spread within the culture. Interestingly, while cell proliferation was not induced in these post-mitotic neurons, HCMV did increase expression of proliferative markers Ki67 and PCNA suggesting alterations in cell cycle machinery. These finding are consistent with previous HCMV-mediated changes in various cell types and implicate the virus’ ability to alter proliferative pathways to promote virion production. HCMV also induces significant structural changes in forebrain neurons, such as the formation of syncytia and retraction of neurites. Finally, we demonstrate that HCMV disrupts calcium signaling and decreases neurotransmission, with action potential generation effectively silenced after 15 days post infection. Taken together, our data highlight the potential for forebrain neurons to be permissive to HCMV infection in the CNS, which could have significant implications on overall brain health and function.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3