Stress-induced brain responses are associated with BMI in women

Author:

Kühnel AnneORCID,Hagenberg JonasORCID,Knauer-Arloth JanineORCID,Ködel Maik,Czisch MichaelORCID,Sämann Philipp G.ORCID,Binder Elisabeth B.ORCID,Kroemer Nils B.ORCID,

Abstract

AbstractBackgroundStress is associated with elevated risk for overweight and obesity, especially in women. Since body mass index (BMI) is correlated with increased inflammation and reduced baseline cortisol, obesity may lead to altered stress responses. However, it is not well understood whether stress-induced changes in brain function scale with BMI and if peripheral inflammation contributes to this.MethodsWe investigated the subjective, autonomous, endocrine, and neural stress response in a transdiagnostic sample (N=192, 120 women, MBMI=23.7±4.0 kg/m2; N=148, 89 women, with cytokines). First, we used regression models to examine effects of BMI on stress reactivity. Second, we predicted BMI based on stress-induced changes in activation and connectivity using cross-validated elastic-nets. Third, to link stress responses with inflammation, we quantified the association of BMI-related cytokines with model predictions.ResultsBMI was associated with higher negative affect after stress and an increased response to stress in the substantia nigra and the bilateral posterior insula (pFWE<.05). Moreover, stress-induced changes in activation of the hippocampus, dACC, and posterior insula predicted BMI in women (pperm<.001), but not in men. BMI was associated with higher baseline cortisol while cytokines were not associated with predicted BMI scores.ConclusionsStress-induced changes in the hippocampus and posterior insula predicted BMI in women, indicating that acute brain responses to stress might be more strongly related to a higher BMI in women compared to men. Altered stress-induced changes were associated with baseline cortisol but independent of cytokines, suggesting that the endocrine system and not inflammation contributes to stress-related changes in BMI.

Publisher

Cold Spring Harbor Laboratory

Reference103 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3