Comparison between tools for automatic segmentation of white matter hyperintensities of presumed vascular origin in aging: which one, how and why to choose the most suitable for your purpose?

Author:

Torres-Simon LuciaORCID,del Cerro-León AlbertoORCID,Yus Miguel,Bruña RicardoORCID,Gil-Martinez Lidia,Marcos Dolado AlbertoORCID,Maestú FernandoORCID,Arrazola-Garcia Juan,Cuesta PabloORCID

Abstract

AbstractCerebrovascular damage consequent to small vessel disease (SVD) is a common companion of healthy and pathological aging. Neuroimaging signatures of SVD are present in virtually all people older than 60 years, and their prevalence increases with age. According to the STRIVE criteria, white matter hyperintensities (WMH) have been associated with different clinical symptoms and constitute a good clinical proxy for SVD. This is important as WMH can be directly assessed via MRI. Currently, the most widely used method to detect and assess the severity of HWH are clinical scales based on visual assessment, but these scales do not offer real quantitative information, making it difficult to assess progression. Quantitative information can be approached through the manual segmentation of physicians, but this process is extremely time-consuming and presents a high inter and intra evaluators variability, which makes its application in routine protocols unfeasible. Therefore, it is imperative to facilitate the use of automatic protocols capable of providing WMH load measurements that are as accurate as possible to those obtained by manual segmentation. In this study, we aim to identify the most accurate software for WMH segmentation, providing not only methodological insights but also usability knowledge that would enlighten the tradeoff between clinical accuracy and real-world implementation. The data set consisted of T1 and Flair images of 45 cognitively healthy older participants (mean age 71 ± 5). The study analyzed WMH segmentations obtained with clinician manual segmentation and four tools included in three of the most widely used neuroimaging toolkits: 1) Lesion Prediction Algorithm (LPA) and Lesion Growth Algorithm (LGA) of the lesion segmentation tool (LST); 2) sequence adaptive multimodal segmentation (SAMSEG); and 3) the brain intensity anomalies classification algorithm (BIANCA). The analysis evaluated the correlations with the Fazekas clinical scale, the influence of the WMH load and evaluated the performance at the individual lesion level. The results showed that the supervised methods (LST-LPA and BIANCA) performed better in all the analyzes and were the only ones capable of consistently capturing small lesions (<26 mm3). However, these tools lose performance when applied to new data. Considering the results (accuracy and ease of use), we concluded that, in the general case, the combined use of the two FSL tools emerged as the best option. We confirmed this conclusion by evaluating WMH segmentation in a dataset of 500 older individuals and found that the LPA results, using LGA to control for divergences, offered valuable and actionable clinical information, both to help clinicians make treatment decisions treatment and to monitor pathological progression.

Publisher

Cold Spring Harbor Laboratory

Reference68 articles.

1. White matter hyperintensities in vascular contributions to cognitive impairment and dementia (VCID): Knowledge gaps and opportunities;Alzheimer’s and Dementia: Translational Research and Clinical Interventions,2019

2. The Longitudinal Assessment of Neuropsychiatric Symptoms in Mild Cognitive Impairment and Alzheimer’s Disease and Their Association With White Matter Hyperintensities in the National Alzheimer’s Coordinating Center’s Uniform Data Set;Biological Psychiatry: Cognitive Neuroscience and Neuroimaging,2021

3. Relation of cerebral vessel disease to Alzheimer’s disease dementia and cognitive function in elderly people: a cross-sectional study;The Lancet Neurology,2016

4. Association of white matter hyperintensities and gray matter volume with cognition in older individuals without cognitive impairment;Brain Structure and Function,2016

5. Balakrishnan, R. , Valdés Hernández, M. del C. , & Farrall, A. J. (2021). Automatic segmentation of white matter hyperintensities from brain magnetic resonance images in the era of deep learning and big data – A systematic review. Computerized Medical Imaging and Graphics, 88(December 2020). https://doi.org/10.1016/j.compmedimag.2021.101867

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3