Author:
Watson Joshua,Wang Tianfang,Ho Kun-Lin,Feng Yuan,Dobbin Kevin K,Zhao Shaying
Abstract
AbstractBackgroundAbout 20% of breast cancers in humans are basal-like, a subtype that is often triple negative and difficult to treat. An effective translational model for basal-like breast cancer (BLBC) is currently lacking and urgently needed. To determine if spontaneous mammary tumors in pet dogs could meet this need, we subtyped canine mammary tumors and evaluated the dog-human molecular homology at the subtype level.MethodsWe subtyped 236 canine mammary tumors from 3 studies by applying various subtyping strategies on their RNA-seq data. We then performed PAM50 classification with canine tumors alone, as well as with canine tumors combined with human breast tumors. We investigated differential gene expression, signature gene set enrichment, expression association, mutational landscape, and other features for dog-human subtype comparison.ResultsOur independent genome-wide subtyping consistently identified two molecularly distinct subtypes among the canine tumors. One subtype is mostly basal-like and clusters with human BLBC in cross-species PAM50 classification, while the other subtype does not cluster with any human breast cancer subtype. Furthermore, the canine basal-like subtype recaptures key molecular features (e.g., cell cycle gene upregulation, TP53 mutation) and gene expression patterns that characterize human BLBC. It is enriched histological subtypes that match human breast cancer, unlike the other canine subtype. However, about 33% of canine basal-like tumors are estrogen receptor negative (ER-) and progesterone receptor positive (PR+), which is rare in human breast cancer. Further analysis reveals that these ER-PR+ canine tumors harbor additional basal-like features, including upregulation of genes of interferon-γ response and of the Wnt-pluripotency pathway. Interestingly, we observed an association ofPGRexpression with gene silencing in all canine tumors, and with the expression of T cell exhaustion markers (e.g.,PDCD1) in ER-PR+ canine tumors.ConclusionsWe identify a canine mammary tumor subtype that molecularly resembles human BLBC overall, and thus could serve as a vital spontaneous animal model of this devastating breast cancer subtype. Our study also sheds light on the dog-human difference in the mammary tumor histology and the hormonal cycle.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献