The novel coronary artery disease risk factor ADAMTS-7 modulates atherosclerotic plaque formation by degradation of TIMP-1

Author:

Sharifi M. Amin,Wierer Michael,Dang Tan An,Milic Jelena,Moggio Aldo,Sachs Nadja,von Scheidt MoritzORCID,Hinterdobler Julia,Müller PhilippORCID,Werner JuliaORCID,Stiller Barbara,Aherrahrou Zouhair,Erdmann JeanetteORCID,Zaliani Andrea,Graettinger Mira,Reinshagen JeanetteORCID,Gul Sheraz,Gribbon Philip,Maegdefessel LarsORCID,Bernhagen JürgenORCID,Sager Hendrik B.ORCID,Mann Matthias,Schunkert HeribertORCID,Kessler ThorstenORCID

Abstract

AbstractBackgroundTheADAMTS7locus was genome-wide significantly associated with coronary artery disease (CAD). Lack of the extracellular matrix (ECM) protease ADAMTS-7 was shown to reduce atherosclerotic plaque formation.ObjectiveTo identify molecular mechanisms and downstream targets of ADAMTS-7 mediating risk of atherosclerosis.MethodsTargets of ADAMTS-7 were identified by high-resolution mass spectrometry of atherosclerotic plaques from Apoe-/- and Apoe-/-Adamts7-/- mice. ECM proteins were identified using solubility profiling. Putative targets were validated using immunofluorescence,in vitrodegradation assays, co-immunoprecipitation, and Förster resonance energy transfer (FRET)-based protein-protein interaction assays.ADAMTS7expression was measured in fibrous caps of human carotid artery plaques.ResultsIn humans,ADAMTS7expression was higher in caps of unstable as compared to stable carotid plaques. Compared to Apoe-/- mice, atherosclerotic aortas of Apoe-/- mice lacking Adamts-7 (Apoe-/-Adamts7-/-) contained higher protein levels of tissue inhibitor of metalloproteases 1 (Timp-1). In co-immunoprecipitation experiments, the catalytic domain of ADAMTS-7 bound to TIMP-1, which was degraded in the presence of ADAMTS-7in vitro.ADAMTS-7 reduced the inhibitory capacity of TIMP-1 at its canonical target matrix metalloprotease 9 (MMP-9) As a downstream mechanism, we investigated collagen content in plaques of Apoe-/- and Apoe-/-Adamts7-/- mice after Western diet. Picrosirius red staining of the aortic root revealed less collagen as a readout of higher MMP-9 activity in Apoe-/- as compared to Apoe-/- Adamts7-/- mice. In order to facilitate high-throughput screening for ADAMTS-7 inhibitors with the aim to decrease TIMP-1 degradation, we designed a FRET-based assay targeting the ADAMTS-7 catalytic site.ConclusionADAMTS-7,which is induced in unstable atherosclerotic plaques, decreases TIMP-1 stability reducing its inhibitory effect on MMP-9, which is known to promote collagen degradation and is likewise genome-wide significantly associated with CAD. Disrupting the interaction of ADAMTS-7 and TIMP-1 might be a strategy to increase collagen content and plaque stability for reduction of atherosclerosis-related events.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3