Abstract
AbstractPrion-like low-complexity domains (PLCDs) are involved in the formation and regulation of distinct biomolecular condensates that form via coupled associative and segregative phase transitions. We previously deciphered how evolutionarily conserved sequence features drive phase separation of PLCDs through homotypic interactions. However, condensates typically encompass a diverse mixture of proteins with PLCDs. Here, we combine simulations and experiments to study mixtures of PLCDs from two RNA binding proteins namely, hnRNPA1 and FUS. We find that 1:1 mixtures of the A1-LCD and FUS-LCD undergo phase separation more readily than either of the PLCDs on their own. The enhanced driving forces for phase separation of mixtures of A1-LCD and FUS-LCD arise partly from complementary electrostatic interactions between the two proteins. This complex coacervation-like mechanism adds to complementary interactions among aromatic residues. Further, tie line analysis shows that stoichiometric ratios of different components and their sequence-encoded interactions jointly contribute to the driving forces for condensate formation. These results highlight how expression levels might be tuned to regulate the driving forces for condensate formationin vivo. Simulations also show that the organization of PLCDs within condensates deviates from expectations based on random mixture models. Instead, spatial organization within condensates will reflect the relative strengths of homotypic versus heterotypic interactions. We also uncover rules for how interaction strengths and sequence lengths modulate conformational preferences of molecules at interfaces of condensates formed by mixtures of proteins. Overall, our findings emphasize the network-like organization of molecules within multicomponent condensates, and the distinctive, composition-specific conformational features of condensate interfaces.Significance StatementBiomolecular condensates are mixtures of different protein and nucleic acid molecules that organize biochemical reactions in cells. Much of what we know about how condensates form comes from studies of phase transitions of individual components of condensates. Here, we report results from studies of phase transitions of mixtures of archetypal protein domains that feature in distinct condensates. Our investigations, aided by a blend of computations and experiments, show that the phase transitions of mixtures are governed by a complex interplay of homotypic and heterotypic interactions. The results point to how expression levels of different protein components can be tuned in cells to modulate internal structures, compositions, and interfaces of condensates, thus affording distinct ways to control the functions of condensates.
Publisher
Cold Spring Harbor Laboratory
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献