Author:
Rayhan Mohammad,Siddiquee Mohd. Faijanur-Rob,Shahriar Asif,Ahmed Hossain,Mahmud Aar Rafi,Alam Muhammad Shaiful,Uddin Muhammad Ramiz,Acharjee Mrityunjoy,Shimu Mst. Sharmin Sultana,Shamsir Mohd. Shahir,Emran Talha Bin
Abstract
AbstractBackgroundLuciferase is a well-known oxidative enzyme that produces bioluminescence. ThePseudomonas meliaeis a plant pathogen that causes wood rot on nectarine and peach and possesses a luciferase-like monooxygenase. After activation, it produces bioluminescence, and the pathogen’s bioluminescence is a visual indicator of diseased plants.MethodsThe present study aims to model and characterize the luciferase-like monooxygenase protein inP. meliaefor its similarity to well-established luciferase. In this study, the luciferase-like monooxygenase fromP. meliaeinfects chinaberry plants has been modeled first and then studied by comparing it with existing known luciferase. Also, the similarities between uncharacterized luciferase fromP. meliaeand template fromGeobacillus thermodenitrificanswere analyzed to find the novelty ofP. meliae.ResultsThe results suggest that the absence of bioluminescence inP. meliaecould be due to the evolutionary mutation in positions 138 and 311. The active site remains identical except for two amino acids;P. meliaeTyr138 instead of His138 and Leu311 instead of His311. Therefore, theP. meliaewill have a potential future application, and mutation of the residues 138 and 311 can be restored luciferase light-emitting ability.ConclusionsThis study will help further improve, activate, and repurpose the luciferase fromP. meliaeas a reporter for gene expression.
Publisher
Cold Spring Harbor Laboratory