Abstract
Satellite DNA (satDNA) is rapidly evolving class of tandem repeats with some motifs being involved in centromere organization and function. Rapid co-evolution of centromeric satDNA and associated proteins has been mostly attributed to the so-called centromere drive. To identify repeats associated with centromeric regions and test for the role of meiotic drive in their evolution, we investigated satDNA across Southern and Coastal clades of African annual killifishes of the genus Nothobranchius. C-banding showed expansion of (peri)centromeric heterochromatin regions in the Southern-clade killifishes. Molecular cytogenetic and bioinformatic analyses further revealed that two previously identified satellites, Nfu-SatA and Nfu-SatB, are associated with centromeres only in one lineage of the Southern clade. Nfu-SatB was, however, detected outside centromeres also in other members of the Coastal clade, which is consistent with the "library" hypothesis of satDNA evolution. We also identified a novel satDNA, Cl-36, associated with (peri)centromeres in N. foerschi, N. guentheri and N. rubripinnis from the Coastal clade. Our findings could be explained by centromere drive shaping karyotype change and centromeric repeat turnover in Nothobranchius species with possible reversal of spindle polarity within the Southern clade.
Publisher
Cold Spring Harbor Laboratory
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献