Flattening the curve - How to get better results with small deep-mutational-scanning datasets

Author:

Wirnsberger GregorORCID,Pritišanac IvaORCID,Oberdorfer GustavORCID,Gruber KarlORCID

Abstract

AbstractProteins are utilized in various biotechnological applications, often requiring the optimization of protein properties by introducing specific amino acid exchanges. Deep mutational scanning (DMS) is an effective high-throughput method for evaluating the effects of these exchanges on protein function. DMS data can then inform the training of a neural network to predict the impact of mutations. Most approaches employ some representation of the protein sequence for training and prediction. As proteins are characterized by complex structures and intricate residue interaction networks, directly providing structural information as input reduces the need to learn these features from the data.We introduce a method for encoding protein structures as stacked 2D contact maps, which capture residue interactions, their evolutionary conservation, and mutation-induced interaction changes. Furthermore, we explored techniques to augment neural network training performance on smaller DMS datasets. To validate our approach, we trained three neural network architectures originally used for image analysis on three DMS datasets, and we compared their performances with networks trained solely on protein sequences. The results confirm the effectiveness of the protein structure encoding in machine learning efforts on DMS data. Using structural representations as direct input to the networks, along with data augmentation and pre-training, significantly reduced demands on training data size and improved prediction performance, especially on smaller datasets, while performance on large datasets was on par with state-of-the-art sequence convolutional neural networks.The methods presented here have the potential to provide the same workflow as DMS without the experimental and financial burden of testing thousands of mutants. Additionally, we present an open-source, user-friendly software tool to make these data analysis techniques accessible, particularly to biotechnology and protein engineering researchers who wish to apply them to their mutagenesis data.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3