Nascent evolution of recombination rate differences as a consequence of chromosomal rearrangements

Author:

Näsvall K.,Boman J.ORCID,Höök L.,Vila R.,Wiklund C.,Backström N.ORCID

Abstract

AbstractReshuffling of genetic variation occurs both by independent assortment of chromosomes and by homologous recombination. Such reshuffling can generate novel allele combinations and break linkage between advantageous and deleterious variants which increases both the potential and the efficacy of natural selection. Here we used high-density linkage maps to characterize global and regional recombination rate variation in two populations of the wood white butterfly (Leptidea sinapis) with distinct karyotypes. The recombination data were compared to estimates of genetic diversity and measures of selection to assess the relationship between chromosomal rearrangements, crossing over, maintenance of genetic diversity and adaptation. Our data show that the recombination rate is influenced by both chromosome size and number, but that the difference in recombination rate between karyotypes is reduced as a consequence of a higher frequency of double crossovers in larger chromosomes. As expected from effects of selection on linked sites, we observed an overall positive association between recombination rate and genetic diversity in both populations. Our results also revealed a significant effect of chromosomal rearrangements on the rate of intergenic diversity change between populations, but limited effects on polymorphisms in coding sequence. We conclude that chromosomal rearrangements can have considerable effects on the recombination landscape and consequently influence both maintenance of genetic diversity and efficiency of selection in natural populations.Author summaryReshuffling genetic variation is fundamental for maintaining genetic diversity and creating novel allelic combinations. The two main processes involved are the independent assortment of chromosomes and homologous recombination. The number and size of chromosomes can influence the amount of pairwise reshuffling and local recombination patterns. However, studying this in natural populations is challenging. In this study, we used the wood white butterfly, which exhibits an extreme within-species karyotype difference. Extensive fusions and fissions have resulted in almost twice as many chromosomes in the southern populations compared to the northeast populations. This unique system allowed us to assess the relationship between karyotype differences, pairwise reshuffling, recombination rate variation and subsequent effects on diversity and linked selection. We found that a higher number of chromosomes result in a higher recombination rate, although the difference was less than expected due to multiple recombination events occuring on longer chromosomes. Both populations showed an association between recombination rate and genome-wide patterns of genetic diversity and efficacy of selection. We provide evidence that chromosomal rearrangements have considerable effects on the recombination landscape and thereby influence the maintenance of genetic diversity in populations.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3