Cell specialization and coordination inArabidopsisleaves upon pathogenic attack revealed by scRNA-seq

Author:

Delannoy Etienne,Batardiere Bastien,Pateyron Stéphanie,Soubigou-Taconnat Ludivine,Chiquet Julien,Colcombet Jean,Lang Julien

Abstract

SummaryPlant defense responses involve several biological processes that allow plants to fight against pathogenic attacks. How these different processes are orchestrated within organs and depend on specific cell types is poorly known. Here, using scRNA-seq technology on three independent biological replicates, we identified 10 distinct cell populations in wild-typeArabidopsisleaves inoculated with the bacterial pathogenPseudomonas syringaeDC3000. Among those, we retrieved major cell types of the leaves (mesophyll, guard, epidermal, companion and vascular S cells) to which we could associate characteristic transcriptional reprogramming and regulators, thereby specifying different cell-type responses to the pathogen. Further analyses of transcriptional dynamics, based on inference of cell trajectories, indicated that the different cell types, in addition to their characteristic defense responses, can also share similar modules of gene reprogramming, allowing for instance vascular S cells, epidermal cells and mesophyll cells to converge towards an identical cell fate, mostly characterized by lignification and detoxification functions. Moreover, it appeared that the defense responses of these three cell types can evolve along a second separate path. As this divergence does not correspond to the differentiation between immune and susceptible cells, we speculate that this might reflect the discrimination between cell-autonomous and non-cell-autonomous responses. Altogether our data provide an upgraded framework to describe, explore and explain the specialization and the coordination of plant cell responses upon pathogenic challenge.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3