Chemically Tunable FOXM1-D Sensor Revealed FOXM1 Direct Influence on Cell Cycle

Author:

Phongkitkarun KriengkraiORCID,Chusorn PorncheeraORCID,Kamkaew Maliwan,Lam Eric W.-F.ORCID,Promptmas ChamrasORCID,Sampattavanich SomponnatORCID

Abstract

AbstractForkhead box protein M1 (FOXM1) is a proliferation-associated transcription factor contributing to the G2/M phase transition of the cell cycle. Although the upregulation of FOXM1 has been observed in different cancer types, how the regulation of FOXM1 dynamically alters during cell cycles and potentially contributes to tumorigenesis is not well understood. We showed here the development and application of a tunable FOXM1-DHFR (FOXM1-D) sensor that enables surveillance and manipulation of the FOXM1 abundance. Using trimethoprim (TMP) to stabilize the sensor, we measured the kinetics of FOXM1-D production, degradation, and cytosolic-to-nuclear translocation in the G1 and G2 cell-cycle phases. By controlling FOXM1-D stability in different synchronized cell cycle pools, we found that the G1- and S-synchronized cells finished their first cell division faster, although the G2-synchronized cells were unaffected. Our analysis of single-cell FOXM1-D dynamics revealed that the two-round dividing cells had a lower amplitude and later peak time than those arrested in the first cell division. Destabilizing FOXM1-D in the single-round dividing cells enabled these cells to re-enter the second cell division, proving that overproduction of FOXM1 causes cell cycle arrest and prevents unscheduled proliferation.

Publisher

Cold Spring Harbor Laboratory

Reference41 articles.

1. Dynamics of protein synthesis and degradation through the cell cycle

2. Ali Abroudi, S. S. , and Gamalathge D. Kulasiri 2015. A review of computational models of mammalian cell cycle. 1st International Congress on Modelling and Simulation, Gold Coast, Australia.

3. Novel functions of FoxM1: from molecular mechanisms to cancer therapy

4. Translocation can drive the unfolding of a preprotein domain;EMBO J,1993

5. Increased FOXM1 expression can stimulate DNA repair in normal hepatocytes in vivo but also increases nuclear foci associated with senescence;Cell Prolif,2015

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3