Cryo-electron tomography sheds light on the elastic nature of theTrypanosoma bruceitripartite attachment complex

Author:

Bregy Irina,Radecke Julika,Noga Akira,van den Hoek Hugo,Kern Mara,Haenni Beat,Engel Benjamin D.,Siebert C. Alistair,Ishikawa TakashiORCID,Zuber BenoîtORCID,Ochsenreiter TorstenORCID

Abstract

AbstractIn contrast to many eukaryotic organisms, trypanosomes only contain a single mitochondrion per cell. Within that singular mitochondrion, the protist carries a single mitochondrial genome that consists of a complex DNA network, the kinetoplast DNA (kDNA). Segregation of the replicated kDNA is coordinated by the basal body of the cell’s single flagellum. The tripartite attachment complex (TAC) forms a physical connection between the proximal end of the basal body and the kDNA. This allows anchoring of the kDNA throughout the cell cycle and couples kDNA segregation with the separation of the basal bodies prior to cell division. Over the past years, several components of the TAC have been identified. To shed light on the structure of the cytoplasmic part of the TAC (known as the exclusion zone), we performed cryo-electron tomography on whole cells. This allowed us to acquire three-dimensional high-resolution images of the exclusion zonein situ. We observed that the exclusion zone filaments offer great mechanical flexibility for basal body movement. We measured the dimensions of the individual structural elements of the area, as well as the overall orientation and positioning of the basal bodies towards the mitochondrial kDNA pocket. Using a combination of experimental data and modelling, we generated a structural model of the exclusion zone protein p197. Our findings suggest that the majority of p197 consists of a string of spectrin-like repeats. We propose that these structural units provide the architecture of a molecular spring and that they are required in the TAC to withstand the mechanical forces generated through basal body repositioning events during kDNA segregation and motility of the organism.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3