Statistical analyses of motion-corrupted MRI relaxometry data

Author:

Corbin NadègeORCID,Oliveira Rita,Raynaud Quentin,Domenicantonio Giulia Di,Draganski BogdanORCID,Kherif Ferath,Callaghan Martina F.,Lutti Antoine

Abstract

AbstractConsistent noise variance across data points (i.e. homoscedasticity) is required to ensure the validity of statistical analyses of MRI data conducted using linear regression methods. However, head motion leads to degradation of image quality, introducing noise heteroscedasticity into ordinary-least square analyses. The recently introduced QUIQI method restores noise homoscedasticity by means of weighted least square analyses in which the weights, specific for each dataset of an analysis, are computed from an index of motion-induced image quality degradation. QUIQI was first demonstrated in the context of brain maps of the MRI parameter R2*, which were computed from a single set of images with variable echo time. Here, we extend this framework to quantitative maps of the MRI parameters R1, R2*, and MTsat, which are computed from multiple sets of images. QUIQI allows for optimization of the noise model by using metrics quantifying heteroscedasticity and free energy. QUIQI restores homoscedasticity more effectively than insertion of an image quality index in the analysis design and yields higher sensitivity than simply removing the datasets most corrupted by head motion from the analysis. In sum, QUIQI provides an optimal approach to group-wise analyses of a range of quantitative MRI parameter maps that is robust to inherent homoscedasticity.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3