Systematic analyses of the resistance potential of drugs targeting SARS-CoV-2 main protease

Author:

Flynn Julia M.ORCID,Huang Qiu Yu J.ORCID,Zvornicanin Sarah N.,Schneider-Nachum Gily,Shaqra Ala M.,Yilmaz Nese KurtORCID,Moquin Stephanie A.,Dovala Dustin,Schiffer Celia A.,Bolon Daniel N.A.

Abstract

AbstractDrugs that target the main protease (Mpro) of SARS-CoV-2 are effective therapeutics that have entered clinical use. Wide-scale use of these drugs will apply selection pressure for the evolution of resistance mutations. To understand resistance potential in Mpro, we performed comprehensive surveys of amino acid changes that can cause resistance in a yeast screen to nirmatrelvir (contained in the drug Paxlovid), and ensitrelvir (Xocova) that is currently in phase III trials. The most impactful resistance mutation (E166V) recently reported in multiple viral passaging studies with nirmatrelvir showed the strongest drug resistance score for nirmatrelvir, while P168R had the strongest resistance score for ensitrelvir. Using a systematic approach to assess potential drug resistance, we identified 142 resistance mutations for nirmatrelvir and 177 for ensitrelvir. Among these mutations, 99 caused apparent resistance to both inhibitors, suggesting a strong likelihood for the evolution of cross-resistance. Many mutations that exhibited inhibitor-specific resistance were consistent with distinct ways that each inhibitor protrudes beyond the substrate envelope. In addition, mutations with strong drug resistance scores tended to have reduced function. Our results indicate that strong pressure from nirmatrelvir or ensitrelvir will select for multiple distinct resistant lineages that will include both primary resistance mutations that weaken interactions with drug while decreasing enzyme function and secondary mutations that increase enzyme activity. The comprehensive identification of resistance mutations enables the design of inhibitors with reduced potential of developing resistance and aids in the surveillance of drug resistance in circulating viral populations.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3