Data-driven representations using deep network-coherent methylation autoencoders to identify robust disease and risk factor signatures

Author:

Martínez-Enguita DavidORCID,Dwivedi Sanjiv K.ORCID,Jörnsten Rebecka,Gustafsson MikaORCID

Abstract

ABSTRACTData analysis in systems medicine often employs knowledge-driven approaches, which leverage prior biological insights to guide and inform the study of large omic sets. However, the current state of knowledge in biology is still partial and biased. For example, cancer-associated genes are overrepresented in protein interaction networks. As a result, these approaches may fail to capture novel or unexpected phenomena. In this study, we present a data-driven workflow for the functional analysis of large DNA methylation data using deep autoencoders with biologically relevant latent embeddings (network-coherent autoencoders, NCAEs). We observed an increasing gene co-localization gradient, consistent with the human interactome, within the learned representation of a deep methylation autoencoder. We showcased the capacity of this coherent compressed space to discover signatures for classification associated with aging, smoking, and disease. We believe this approach can improve the understanding of complex epigenetic processes and help develop more effective diagnostic and therapeutic strategies.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3