Impact and characterization of serial structural variations across humans and great apes

Author:

Höps WolframORCID,Rausch TobiasORCID,Ebert PeterORCID,Korbel Jan O.ORCID,Sedlazeck Fritz J.ORCID,

Abstract

AbstractModern sequencing technology enables the detection of complex structural variation (SV) across genomes. However, extensive DNA rearrangements arising through series of mutations, a phenomenon we term serial SV (sSV), remain understudied since their complexity poses a challenge for SV discovery. Here, we present NAHRwhals (https://github.com/WHops/NAHRwhals), a method to infer repeat-mediated series of SVs in long-read genomic assemblies. Applying NAHRwhals to 58 haplotype-resolved human genomes reveals 37 sSV loci of various length and complexity. These sSVs explain otherwise cryptic variation in medically relevant regions such as theTPSAB1gene, 8p23.1 and the DiGeorge and Sotos syndrome regions. Comparisons with great ape assemblies indicate that most human sSVs formed recently and involved non-repeat-mediated processes. NAHRwhals reliably discovers and characterizes sSVs at scale and independent of species, uncovering their genomic abundance and revealing broader implications for disease than prior studies suggested.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3