Abstract
AbstractThe cooperative effect of multiple affinity binding interactions creating a stable bond, known as avidity, is particularly important in assessing the potency of potential drugs such as monoclonal antibodies, CAR T, or NK cells to treat cancer. However, predicting avidity based onin vitrosingle affinity interactions has limitations and often fails to describe the avidity effects observedin vivo. Acoustic force-based assays have recently emerged as a reliable method for direct avidity measurements, expressed as adhesion forces, which positively correlate with drug efficacy. However, to better understand avidity, in particular for cell-cell interactions and correlate it with affinity, a cell model system with controlled avidity-related properties is needed. This study presents a method for producing a cell model system using “effector beads” that can be used in acoustic force spectroscopy-based avidity assays or any other bead-based avidity assay. The protein of interest is biotinylatedin vivoinE.coli, purified and subsequently mixed with streptavidin coated beads to create effector beads. The results demonstrate the dependency of rupture force on the receptor surface density and force loading rate, thus providing valuable information for designing future effector bead assays as well as cell avidity measurements for screening and characterization purposes.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献