Functional connectomics reveals general wiring rule in mouse visual cortex

Author:

Ding Zhuokun,Fahey Paul G.ORCID,Papadopoulos Stelios,Wang Eric Y.ORCID,Celii Brendan,Papadopoulos ChristosORCID,Kunin Alexander B.ORCID,Chang AndersenORCID,Fu JiakunORCID,Ding ZhiweiORCID,Patel SaumilORCID,Ponder KaylaORCID,Muhammad TaliahORCID,Bae J. AlexanderORCID,Bodor Agnes L.,Brittain Derrick,Buchanan JoAnn,Bumbarger Daniel J.,Castro Manuel A.,Cobos Erick,Dorkenwald SvenORCID,Elabbady LeilaORCID,Halageri Akhilesh,Jia Zhen,Jordan Chris,Kapner Dan,Kemnitz NicoORCID,Kinn Sam,Lee Kisuk,Li Kai,Lu Ran,Macrina ThomasORCID,Mahalingam Gayathri,Mitchell Eric,Mondal Shanka Subhra,Mu Shang,Nehoran BarakORCID,Popovych Sergiy,Schneider-Mizell Casey M.ORCID,Silversmith WilliamORCID,Takeno MarcORCID,Torres Russel,Turner Nicholas L.ORCID,Wong William,Wu JingpengORCID,Yin Wenjing,Yu Szi-chieh,Froudarakis EmmanouilORCID,Sinz FabianORCID,Seung H. SebastianORCID,Collman Forrest,da Costa Nuno MaçaricoORCID,Reid R. Clay,Walker Edgar Y.ORCID,Pitkow XaqORCID,Reimer JacobORCID,Tolias Andreas S.ORCID

Abstract

To understand how the brain computes, it is important to unravel the relationship between circuit connectivity and function. Previous research has shown that excitatory neurons in layer 2/3 of the primary visual cortex of mice with similar response 5 properties are more likely to form connections. However, technical challenges of combining synaptic connectivity and functional measurements have limited these studies to few, highly local connections. Utilizing the millimeter scale and nanometer resolution of the MICrONS dataset, we studied the connectivity-10 function relationship in excitatory neurons of the mouse visual cortex across interlaminar and interarea projections, assessing connection selectivity at the coarse axon trajectory and fine synaptic formation levels. A digital twin model of this mouse, that accurately predicted responses to arbitrary video 15 stimuli, enabled a comprehensive characterization of the function of neurons. We found that neurons with highly correlated responses to natural videos tended to be connected with each other, not only within the same cortical area but also across multiple layers and visual areas, including feedforward and feed-20 back connections, whereas we did not find that orientation preference predicted connectivity. The digital twin model separated each neuron’s tuning into a feature component (what the neuron responds to) and a spatial component (where the neuron’s receptive field is located). We show that the feature, but not the 25 spatial component, predicted which neurons were connected at the fine synaptic scale. Together, our results demonstrate the “like-to-like” connectivity rule generalizes to multiple connection types, and the rich MICrONS dataset is suitable to further refine a mechanistic understanding of circuit structure and 30 function.

Publisher

Cold Spring Harbor Laboratory

Reference52 articles.

1. Thirst regulates motivated behavior through modulation of brainwide neural population dynamics;Science,2019

2. Ultrastructure of dendritic spines: correlation between synaptic and spine morphologies

3. Network anatomy and in vivo physiology of visual cortical neurons

4. B. Celii , S. Papadopoulos , Z. Ding , P. G. Fahey , E. Wang , C. Papadopoulos , A. Kunin , S. Patel , J. Alexander Bae , A. L. Bodor , D. Brittain , J. Buchanan , D. J. Bumbarger , M. A. Castro , E. Cobos , S. Dorkenwald , L. Elabbady , A. Halageri , Z. Jia , C. Jordan , D. Kapner , N. Kemnitz , S. Kinn , K. Lee , K. Li , R. Lu , T. Macrina , G. Mahalingam , E. Mitchell , S. S. Mondal , S. Mu , B. Nehoran , S. Popovych , C. M. Schneider-Mizell , W. Silversmith , M. Takeno , R. Torres , N. L. Turner , W. Wong , J. Wu , S.-C. Yu , W. Yin , D. Xenes , L. M. Kitchell , P. K. Rivlin , V. A. Rose , C. A. Bishop , B. Wester , E. Froudarakis , E. Y. Walker , F. H. Sinz , H. Sebastian Seung , F. Collman , N. M. da Costa , R. Clay Reid , X. Pitkow , A. S. Tolias , and J. Reimer . NEURD: A mesh decomposition framework for automated proofreading and morphological analysis of neuronal EM reconstructions. bioRxiv, page 2023.03.14.532674, Mar. 2023.

5. M. Cogswell , F. Ahmed , R. Girshick , L. Zitnick , and D. Batra . Reducing overfitting in deep networks by decorrelating representations. arXiv, Nov. 2015.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3