Functional connectomics reveals general wiring rule in mouse visual cortex
Author:
Ding Zhuokun, Fahey Paul G.ORCID, Papadopoulos Stelios, Wang Eric Y.ORCID, Celii Brendan, Papadopoulos ChristosORCID, Kunin Alexander B.ORCID, Chang AndersenORCID, Fu JiakunORCID, Ding ZhiweiORCID, Patel SaumilORCID, Ponder KaylaORCID, Muhammad TaliahORCID, Bae J. AlexanderORCID, Bodor Agnes L., Brittain Derrick, Buchanan JoAnn, Bumbarger Daniel J., Castro Manuel A., Cobos Erick, Dorkenwald SvenORCID, Elabbady LeilaORCID, Halageri Akhilesh, Jia Zhen, Jordan Chris, Kapner Dan, Kemnitz NicoORCID, Kinn Sam, Lee Kisuk, Li Kai, Lu Ran, Macrina ThomasORCID, Mahalingam Gayathri, Mitchell Eric, Mondal Shanka Subhra, Mu Shang, Nehoran BarakORCID, Popovych Sergiy, Schneider-Mizell Casey M.ORCID, Silversmith WilliamORCID, Takeno MarcORCID, Torres Russel, Turner Nicholas L.ORCID, Wong William, Wu JingpengORCID, Yin Wenjing, Yu Szi-chieh, Froudarakis EmmanouilORCID, Sinz FabianORCID, Seung H. SebastianORCID, Collman Forrest, da Costa Nuno MaçaricoORCID, Reid R. Clay, Walker Edgar Y.ORCID, Pitkow XaqORCID, Reimer JacobORCID, Tolias Andreas S.ORCID
Abstract
To understand how the brain computes, it is important to unravel the relationship between circuit connectivity and function. Previous research has shown that excitatory neurons in layer 2/3 of the primary visual cortex of mice with similar response 5 properties are more likely to form connections. However, technical challenges of combining synaptic connectivity and functional measurements have limited these studies to few, highly local connections. Utilizing the millimeter scale and nanometer resolution of the MICrONS dataset, we studied the connectivity-10 function relationship in excitatory neurons of the mouse visual cortex across interlaminar and interarea projections, assessing connection selectivity at the coarse axon trajectory and fine synaptic formation levels. A digital twin model of this mouse, that accurately predicted responses to arbitrary video 15 stimuli, enabled a comprehensive characterization of the function of neurons. We found that neurons with highly correlated responses to natural videos tended to be connected with each other, not only within the same cortical area but also across multiple layers and visual areas, including feedforward and feed-20 back connections, whereas we did not find that orientation preference predicted connectivity. The digital twin model separated each neuron’s tuning into a feature component (what the neuron responds to) and a spatial component (where the neuron’s receptive field is located). We show that the feature, but not the 25 spatial component, predicted which neurons were connected at the fine synaptic scale. Together, our results demonstrate the “like-to-like” connectivity rule generalizes to multiple connection types, and the rich MICrONS dataset is suitable to further refine a mechanistic understanding of circuit structure and 30 function.
Publisher
Cold Spring Harbor Laboratory
Reference52 articles.
1. Thirst regulates motivated behavior through modulation of brainwide neural population dynamics;Science,2019 2. Ultrastructure of dendritic spines: correlation between synaptic and spine morphologies 3. Network anatomy and in vivo physiology of visual cortical neurons 4. B. Celii , S. Papadopoulos , Z. Ding , P. G. Fahey , E. Wang , C. Papadopoulos , A. Kunin , S. Patel , J. Alexander Bae , A. L. Bodor , D. Brittain , J. Buchanan , D. J. Bumbarger , M. A. Castro , E. Cobos , S. Dorkenwald , L. Elabbady , A. Halageri , Z. Jia , C. Jordan , D. Kapner , N. Kemnitz , S. Kinn , K. Lee , K. Li , R. Lu , T. Macrina , G. Mahalingam , E. Mitchell , S. S. Mondal , S. Mu , B. Nehoran , S. Popovych , C. M. Schneider-Mizell , W. Silversmith , M. Takeno , R. Torres , N. L. Turner , W. Wong , J. Wu , S.-C. Yu , W. Yin , D. Xenes , L. M. Kitchell , P. K. Rivlin , V. A. Rose , C. A. Bishop , B. Wester , E. Froudarakis , E. Y. Walker , F. H. Sinz , H. Sebastian Seung , F. Collman , N. M. da Costa , R. Clay Reid , X. Pitkow , A. S. Tolias , and J. Reimer . NEURD: A mesh decomposition framework for automated proofreading and morphological analysis of neuronal EM reconstructions. bioRxiv, page 2023.03.14.532674, Mar. 2023. 5. M. Cogswell , F. Ahmed , R. Girshick , L. Zitnick , and D. Batra . Reducing overfitting in deep networks by decorrelating representations. arXiv, Nov. 2015.
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|