Oxidation-sensitive cysteines drive IL-38 amyloid formation

Author:

Diaz-Barreiro Alejandro,Cereghetti GeaORCID,Tonacini Jenna,Talabot-Ayer Dominique,Kieffer-Jaquinod SylvieORCID,Huard ArnaudORCID,Swale ChristopherORCID,Couté YohannORCID,Peter MatthiasORCID,Francés-Monerris AntonioORCID,Palmer GabyORCID

Abstract

AbstractCytokines of the interleukin (IL)-1 family are widely expressed in epithelial surfaces, including the epidermis, where they play a key role in the maintenance of barrier integrity and host defense. A recent report associated the IL-1 family member IL-33 with stress granules (SGs) in epithelial cells. Formation of SGs is promoted by the aggregation of proteins harboring low complexity regions (LCRs). In this study, using computational analyses, we predicted the presence of LCRs in six of the eleven IL-1 family members. Among these, IL-38 contained a long LCR and localized to Ras GTPase-activating protein binding protein 1 (G3BP1) positive SGs, as well as to G3BP1 negative intracellular protein condensates in keratinocytes exposed to oxidative stress (OS). In addition, we identified two highly aggregation-prone amyloid core (AC) motifs in the IL-38 LCR and detected the formation of amyloid IL-38 aggregates in response to OS in cells andin vitro. Disulfide bond mapping,in silicomodelling and the analysis of specific cysteine mutants supported a model in which specific oxidation-sensitive cysteines act as redox switches to modify the conformation of IL-38 and thus the surface exposure of its ACs, shuttling it from a soluble state into biomolecular condensates. Finally, the presence of IL-38 granules in human epidermal layers highly exposed to environmental OS suggests that oxidation-induced formation of amyloid aggregates, as a previously unrecognized intrinsic biological property of IL-38, may be physiologically relevant at this epithelial barrier.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3