SimuCell3D: 3D Simulation of Tissue Mechanics with Cell Polarization

Author:

Runser SteveORCID,Vetter RomanORCID,Iber DagmarORCID

Abstract

AbstractThe 3D organisation of cells determines tissue function and integrity, and changes dramatically in development and disease. Cell-based simulations have long been used to define the underlying mechanical principles. However, large computational costs have so far limited simulations to either simplified cell geometries or small tissue patches. Here, we present SimuCell3D, a highly efficient open-source program to simulate large tissues in 3D with subcellular resolution, growth, proliferation, extracellular matrix, fluid cavities, nuclei, and non-uniform mechanical properties, as found in polarised epithelia. Spheroids, vesicles, sheets, tubes, and other tissue geometries can readily be imported from microscopy images and simulated to infer biomechanical parameters. Doing so, we show that 3D cell shapes in layered and pseudostratified epithelia are largely governed by a competition between surface tension and intercellular adhesion. SimuCell3D enables the large-scalein silicostudy of 3D tissue organization in development and disease at an unprecedented level of detail.

Publisher

Cold Spring Harbor Laboratory

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3