TimeTeller: a tool to probe the circadian clock as a multigene dynamical system

Author:

Vlachou Denise,Veretennikova Maria,Usselmann Laura,Vasilyev Vadim,Ott SaschaORCID,Bjarnason Georg A.,Dallmann Robert,Levi Francis,Rand David A.ORCID

Abstract

AbstractRecent studies have established that the circadian clock influences onset, progression and therapeutic outcomes in a number of diseases including cancer and heart diseases. Therefore, there is a need for tools to measure the functional state of the molecular circadian clock and its downstream targets in patients. Moreover, the clock is a multi-dimensional stochastic oscillator and there are few tools for analysing it as a system. In this paper we consider the methodology behind Time-Teller, a machine learning tool that analyses the clock as a system and aims to estimate circadian clock function from a single transcriptome by modelling the multi-dimensional state of the clock. We demonstrate its potential for clock systems assessment by applying it to mouse, baboon and human microarray and RNA-seq data and show how to visualise and quantify the global structure of the clock, quantitatively stratify individual transcriptomic samples by clock dysfunction and globally compare clocks across individuals, conditions and tissues thus highlighting its potential relevance for advancing circadian medicine.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3