Abstract
AbstractBackgroundStructural differences between genomes are a major source of genetic variation that contributes to phenotypic differences. Transposable elements, mobile genetic sequences capable of increasing their copy number and propagating themselves within genomes, can generate structural variation. However, their repetitive nature makes it difficult to characterize fine-scale differences in their presence at specific positions, limiting our understanding of their impact on genome variation. Domesticated maize is a particularly good system for exploring the impact of transposable element proliferation as over 70% of the genome is annotated as transposable elements. High-quality transposable element annotations were recently generated forde-novogenome assemblies of 26 diverse inbred maize lines.ResultsWe generated base-pair resolved pairwise alignments between the B73 maize reference genome and the remaining 25 inbred maize line assemblies. From this data, we classified transposable elements as either shared or polymorphic in a given pairwise comparison. Our analysis uncovered substantial structural variation between lines, representing both putative insertion and deletion events. Putative insertions in SNP depleted regions, which represent recently diverged identity by state blocks, suggest some TE families may still be active. However, our analysis reveals that, genome-wide, deletions of transposable elements account for more structural variation than insertions. These deletions are often large structural variants containing multiple transposable elements.ConclusionsCombined, our results highlight how transposable elements contribute to structural variation and demonstrate that deletion events are a major contributor to genomic differences.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献