Abstract
AbstractThe assembly of basement membranes (BMs) into tissue-specific morphoregulatory structures requires non-core BM components. Work inDrosophilaindicates a principal role of collagen-binding matricellular glycoprotein SPARC (Secreted Protein, Acidic, Rich in Cysteine) in larval fat body BM assembly. We report that SPARC and collagen IV (Col(IV)) first colocalize in the trans-Golgi of hemocytes. Mutating the collagen-binding epitopes of SPARC leads to 2ndinstar larval lethality, indicating that SPARC binding to Col(IV) is essential for survival. Analysis of this mutant reveals increased Col(IV) puncta within adipocytes and intense perimeter Col(IV) staining surrounding the fat body as compared to wild-type larvae, reflecting a disruption in chaperone-like activity. In addition, Col(IV) in the wing imaginal disc was absent. Removal of the disulfide bridge in EF-hand2, which is known to enhance Col(IV) binding by SPARC, did not lead to larval lethality; however, a similar but less intense fat body phenotype was observed. Additionally, both SPARC mutants have altered fat body BM pore topography. Wing imaginal disc-derived SPARC did not localize within Col(IV)-rich matrices, indicating a distinct variant. Collectively, these data demonstrate the essential role of Col(IV) chaperone-like activity of SPARC toDrosophiladevelopment and indicate tissue-specific variants with differential functions.
Publisher
Cold Spring Harbor Laboratory