Force-independent interactions of talin and vinculin govern integrin-mediated mechanotransduction

Author:

Atherton Paul,Lausecker Franziska,Carisey Alexandre,Gilmore Andrew,Critchley David,Barsukov Igor,Ballestrem Christoph

Abstract

Talin, vinculin and paxillin are core components of the dynamic link between integrins and actomyosin. Here we study the mechanisms that mediate their activation and association using a mitochondrial-targeting assay, structure-based mutants, and advanced microscopy. As expected, full-length vinculin and talin are auto-inhibited and do not interact with each other in this state. Contrary to previous models that propose a critical role for forces driving talin-vinculin association, our data show that force-independent relief of auto-inhibition is sufficient to mediate their tight interaction. Interestingly, paxillin can bind to both talin and vinculin when either is inactive. Further experiments demonstrate that adhesions containing paxillin and vinculin can form without talin following integrin activation. However, these are largely deficient in exerting traction forces to the matrix. Our observations lead to a model whereby paxillin contributes to talin and vinculin recruitment into nascent adhesions. Activation of the talin-vinculin axis subsequently leads to the engagement with the traction force-machinery and focal adhesion maturation.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3