Disease swamps molecular signatures of genetic-environmental associations to abiotic factors in Tasmanian devil (Sarcophilus harrisii) populations

Author:

Fraik Alexandra K.ORCID,Margres Mark J.,Epstein Brendan,Barbosa Soraia,Jones Menna,Hendricks Sarah,Schönfeld Barbara,Stahlke Amanda R.,Veillet Anne,Hamede Rodrigo,McCallum Hamish,Lopez-Contreras Elisa,Kallinen Samantha J.,Hohenlohe Paul A.,Kelley Joanna L.,Storfer Andrew

Abstract

AbstractLandscape genomics studies focus on identifying candidate genes under selection via spatial variation in abiotic environmental variables, but rarely by biotic factors such as disease. The Tasmanian devil (Sarcophilus harrisii) is found only on the environmentally heterogeneous island of Tasmania and is threatened with extinction by a nearly 100% fatal, transmissible cancer, devil facial tumor disease (DFTD). Devils persist in regions of long-term infection despite epidemiological model predictions of species’ extinction, suggesting possible adaptation to DFTD. Here, we test the extent to which spatial variation and genetic diversity are associated with the abiotic environment and/or by DFTD. We employ genetic-environment association (GEAs) analyses using a RAD-capture panel consisting of 6,886 SNPs from 3,286 individuals sampled pre- and post-disease arrival. Pre-disease, we find significant correlations of allele frequencies with environmental variables, including 349 unique loci linked to 64 genes, suggesting local adaptation to abiotic environment. Following DFTD arrival, however, we detected few of the pre-disease candidate loci, but instead frequencies of candidate loci linked to 14 genes correlated with disease prevalence. Loss of apparent signal of abiotic local adaptation following disease arrival suggests swamping by the strong selection imposed by DFTD. Further support for this result comes from the fact that post-disease candidate loci are in linkage disequilibrium with genes putatively involved in immune response, tumor suppression and apoptosis. This suggests the strength GEA associations of loci with the abiotic environment are swamped resulting from the rapid onset of a biotic selective pressure.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3