CDX4 regulates the progression of neural maturation in the spinal cord

Author:

Joshi PiyushORCID,Darr Andrew J.,Skromne Isaac

Abstract

ABSTRACTThe progressive maturation of cells down differentiation lineages is controlled by collaborative interactions between networks of extracellular signals and intracellular transcription factors. In the vertebrate spinal cord, FGF, Wnt and Retinoic Acid signaling pathways regulate the progressive caudal-to-rostral maturation of neural progenitors by regulating a poorly understood gene regulatory network of transcription factors. We have mapped out this gene regulatory network in the chicken pre-neural tube, identifying CDX4 as a dual-function core component that simultaneously regulates gradual loss of cell potency and acquisition of differentiation states: in a caudal-to-rostral direction, CDX4 represses the early neural differentiation marker Nkx1.2 and promotes the late neural differentiation marker Pax6. Significantly, CDX4 prevents premature PAX6-dependent neural differentiation by blocking Ngn2 activation. This regulation of CDX4 over Pax6 is restricted to the rostral pre-neural tube by Retinoic Acid signaling. Together, our results show that in the spinal cord, CDX4 is part of the gene regulatory network controlling the sequential and progressive transition of states from high to low potency during neural progenitor maturation. Given CDX well-known involvement in Hox gene regulation, we propose that CDX factors coordinate the maturation and axial specification of neural progenitor cells during spinal cord development.

Publisher

Cold Spring Harbor Laboratory

Reference91 articles.

1. FGF-dependent Notch signaling maintains the spinal cord stem zone

2. Cdx and T Brachyury Co-activate Growth Signaling in the Embryonic Axial Progenitor Niche

3. Initiating Hox gene expression: in the early chick neural tube differential sensitivity to FGF and RA signaling subdivides the HoxB genes in two distinct groups;Development.,2002

4. The on/off of Pax6 controls the tempo of neuronal differentiation in the developing spinal cord

5. FGF signalling controls the timing of Pax6 activation in the neural tube;Development.,2000

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3