Bacterial communities of herbivores and pollinators that have co-evolved Cucurbita spp

Author:

Shapiro Lori R.ORCID,Youngblom Madison,Scully Erin D.,Rocha Jorge,Paulson Joseph Nathaniel,Klepac-Ceraj Vanja,Cibrián-Jaramillo Angélica,López-Uribe Margarita M.

Abstract

AbstractInsects, like all animals, are exposed to diverse environmental microbes throughout their life cycle. Yet, we know little about variation in the microbial communities associated with the majority of wild, unmanaged insect species. Here, we use a 16S rRNA gene metabarcoding approach to characterize temporal and geographic variation in the gut bacterial communities of herbivores (Acalymma vittatum and A. trivittatum) and pollinators (Eucera (Peponapis) pruinosa) that have co-evolved with the plant genus Cucurbita (pumpkin, squash, zucchini and gourds). Overall, we find high variability in the composition of bacterial communities in squash bees and beetles collected from different geographic locations and different time points throughout a growing season. Still, many of the most common OTUs are shared in E. (P.) pruinosa, A. vittatum and A. trivittatum. This suggests these insects may be exposed to similar environmental microbial sources while foraging on the same genus of host plants, and that similar microbial taxa may aid in digestion of Cucurbita plant material. The striped cucumber beetle A. vittatum can also transmit Erwinia tracheiphila, the causal agent of bacterial wilt of cucurbits. We find that few field-collected A. vittatum individuals have detectable E. tracheiphila, and when this plant pathogen is detected, it comprises less than 1% of the gut bacterial community. Together, these results are consistent with previous studies showing that plant feeding insects have highly variable gut bacterial communities, and provides a first step towards understanding the spatiotemporal variation in the microbial communities associated with herbivores and pollinators that depend on Cucurbita host plants.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3