Striatal dopamine D1 receptors control motivation to respond, but not interval timing, during the timing task

Author:

Kamada Taisuke,Hata Toshimichi

Abstract

Dopamine plays a critical role in behavioral tasks requiring interval timing (time perception in a seconds-to-minutes range). Although some studies demonstrate the role of dopamine receptors as a controller of the speed of the internal clock, other studies demonstrate their role as a controller of motivation. Both D1 dopamine receptors (D1DRs) and D2 dopamine receptors (D2DRs) within the dorsal striatum may play a role in interval timing because the dorsal striatum contains rich D1DRs and D2DRs. However, relative to D2DRs, the precise role of D1DRs within the dorsal striatum in interval timing is unclear. To address this issue, rats were trained on the peak-interval 20-sec procedure, and D1DR antagonist SCH23390 was infused into the bilateral dorsocentral striatum before behavioral sessions. Our results showed that the D1DR blockade drastically reduced the maximum response rate and increased the time to start responses with no effects on the time to terminate responses. These findings suggest that the D1DRs within the dorsal striatum are required for motivation to respond, but not for modulation of the internal clock speed.

Funder

Japan Society for the Promotion of Science

Publisher

Cold Spring Harbor Laboratory

Subject

Cellular and Molecular Neuroscience,Cognitive Neuroscience,Neuropsychology and Physiological Psychology

Reference39 articles.

1. Interval Timing, Dopamine, and Motivation

2. Timing for the absence of a stimulus: The gap paradigm reversed.

3. What makes us tick? Functional and neural mechanisms of interval timing

4. Inactivation of the Medial-Prefrontal Cortex Impairs Interval Timing Precision, but Not Timing Accuracy or Scalar Timing in a Peak-Interval Procedure in Rats

5. Catania AC . 1970. Reinforcement schedules and psychophysical judgements: a study of some temporal properties of behavior. In Theory of reinforcement schedules (ed. Schoenfeld WM ), pp. 1–42. Appleton-Century-Crofts, New York.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3