Natural selection on gene-specific codon usage bias is common across eukaryotes

Author:

Peng Zhen,Zaher HaniORCID,Ben-Shahar YehudaORCID

Abstract

SUMMARYAlthough the actual molecular evolutionary forces that shape differences in codon usage across species remain poorly understood, majority of synonymous mutations are assumed to be functionally neutral because they do not affect protein sequences. However, empirical studies suggest that some synonymous mutations can have phenotypic consequences. Here we show that in contrast to the current dogma, natural selection on gene-specific codon usage bias is common across Eukaryota. Furthermore, by using bioinformatic and experimental approaches, we demonstrate that specific combinations of rare codons contribute to the spatial and sex-related regulation of some protein-coding genes in Drosophila melanogaster. Together, these data indicate that natural selection can shape gene-specific codon usage bias, which therefore, represents an overlooked genomic feature that is likely to play an important role in the spatial and temporal regulation of gene functions. Hence, the broadly accepted dogma that synonymous mutations are in general functionally neutral should be reconsidered.

Publisher

Cold Spring Harbor Laboratory

Reference100 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3