The Beacon Calculus: A formal method for the flexible and concise modelling of biological systems

Author:

Boemo Michael A.ORCID,Cardelli LucaORCID,Nieduszynski Conrad A.ORCID

Abstract

AbstractBiological systems are made up of components that change their actions (and interactions) over time and coordinate with other components nearby. Together with a large state space, the complexity of this behaviour can make it difficult to create concise mathematical models that can be easily extended or modified. This paper introduces the Beacon Calculus, a process algebra designed to simplify the task of modelling interacting biological components. Its breadth is demonstrated by creating models of DNA replication dynamics, the gene expression dynamics in response to DNA methylation damage, and a multisite phosphorylation switch. The flexibility of these models is shown by adapting the DNA replication model to further include two topics of interest from the literature: cooperative origin firing and replication fork barriers. The Beacon Calculus is supported with the open-source simulator bcs (https://github.com/MBoemo/bcs.git) to allow users to develop and simulate their own models.Author summarySimulating a model of a biological system can suggest ideas for future experiments and help ensure that conclusions about a mechanism are consistent with data. The Beacon Calculus is a new language that makes modelling simple by allowing users to simulate a biological system in only a few lines of code. This simplicity is critical as it allows users the freedom to come up with new ideas and rapidly test them. Models written in the Beacon Calculus are also easy to modify and extend, allowing users to add new features to the model or incorporate it into a larger biological system. We demonstrate the breadth of applications in this paper by applying the Beacon Calculus to DNA replication and DNA damage repair, both of which have implications for genome stability and cancer. We also apply it to multisite phosphorylation, which is important for cellular signalling. To enable users to create their own models, we created the open-source Beacon Calculus simulator bcs (https://github.com/MBoemo/bcs.git) which is easy to install and is well-supported by documentation and examples.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Formal Method of Z Specification for Basic Alcohol Level Detector;2019 International Conference on Electrical Engineering and Informatics (ICEEI);2019-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3