The Dynamic Strength of the Hair-Cell Tip Link Reveals Mechanisms of Hearing and Deafness

Author:

Mulhall Eric M.,Ward Andrew,Yang Darren,Koussa Mounir A.,Corey David P.ORCID,Wong Wesley P.ORCID

Abstract

AbstractOur senses of hearing and balance rely on the extraordinarily sensitive molecular machinery of the inner ear to convert deflections as small as the width of a single carbon atom1,2 into electrical signals that the brain can process3. In humans and other vertebrates, transduction is mediated by hair cells4, where tension on tip links conveys force to mechanosensitive ion channels5. Each tip link comprises two helical filaments of atypical cadherins bound at their N-termini through two unique adhesion bonds6–8. Tip links must be strong enough to maintain a connection to the mechanotransduction channel under the dynamic forces exerted by sound or head movement—yet might also act as mechanical circuit breakers, releasing under extreme conditions to preserve the delicate structures within the hair cell. Previous studies have argued that this connection is exceptionally static, disrupted only by harsh chemical conditions or loud sound9–12. However, no direct mechanical measurements of the full tip-link connection have been performed. Here we describe the dynamics of the tip-link connection at single-molecule resolution and show how avidity conferred by its double stranded architecture enhances mechanical strength and lifetime, yet still enables it to act as a dynamic mechanical circuit breaker. We also show how the dynamic strength of the connection is facilitated by strong cis-dimerization and tuned by extracellular Ca2+, and we describe the unexpected etiology of a hereditary human deafness mutation. Remarkably, the connection is several thousand times more dynamic than previously thought, challenging current assumptions about tip-link stability and turnover rate, and providing insight into how the mechanotransduction apparatus conveys mechanical information. Our results reveal fundamental mechanisms that underlie mechanoelectric transduction in the inner ear, and provide a foundation for studying multi-component linkages in other biological systems.

Publisher

Cold Spring Harbor Laboratory

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3