Drosophila Short stop as a paradigm for the role and regulation of spectraplakins

Author:

Voelzmann Andre,Liew Yu-Ting,Qu Yue,Hahn Ines,Melero Cristina,Sánchez-Soriano Natalia,Prokop AndreasORCID

Abstract

AbstractSpectraplakins are evolutionarily well conserved cytoskeletal linker molecules that are true members of three protein families: plakins, spectrins and Gas2-like proteins. Spectraplakin genes encode at least 7 characteristic functional domains which are combined in a modular fashion into multiple isoforms, and which are responsible for an enormous breadth of cellular functions. These functions are related to the regulation of actin, microtubules, intermediate filaments, intracellular organelles, cell adhesions and signalling processes during the development and maintenance of a wide variety of tissues. To gain a deeper understanding of this enormous functional diversity, invertebrate genetic model organisms, such as the fruit fly Drosophila, can be used to develop concepts and mechanistic paradigms that can inform the investigation in higher animals or humans. Here we provide a comprehensive overview of our current knowledge of the Drosophila spectraplakin Short stop (Shot). We describe its functional domains and isoforms and compare them with those of the mammalian spectraplakins dystonin and MACF1. We then summarise its roles during the development and maintenance of the nervous system, epithelia, oocytes and muscles, taking care to compare and contrast mechanistic insights across these functions in the fly, but especially also with related functions of dystonin and MACF1 in mostly mammalian contexts. We hope that this review will improve the wider appreciation of how work on Drosophila Shot can be used as an efficient strategy to promote the fundamental concepts and mechanisms that underpin spectraplakin functions, with important implications for biomedical research into human disease.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3