The Hawaiian Bobtail Squid (Euprymna scolopes): A Model to Study the Molecular Basis of Eukaryote-Prokaryote Mutualism and the Development and Evolution of Morphological Novelties in Cephalopods

Author:

Lee Patricia N.,McFall-Ngai Margaret J.,Callaerts Patrick,de Couet H. Gert

Abstract

INTRODUCTIONThe Hawaiian bobtail squid, Euprymna scolopes, is a cephalopod whose small size, short lifespan, rapid growth, and year-round availability make it suitable as a model organism. E. scolopes is studied in three principal contexts: (1) as a model of cephalopod development; (2) as a model of animal-bacterial symbioses; and (3) as a system for studying adaptations of tissues that interact with light. E. scolopes embryos can be obtained continually and can be reared in the laboratory over an entire generation. The embryos and protective chorions are optically clear, facilitating in situ developmental observations, and can be manipulated experimentally. Many molecular protocols have been developed for studying E. scolopes development. This species is best known, however, for its symbiosis with the luminous marine bacterium Vibrio fischeri and has been used to study determinants of symbiont specificity, the influence of symbiosis on development of the squid light organ, and the mechanisms by which a stable association is achieved. Both partners can be grown independently under laboratory conditions, a feature that offers the unusual opportunity to manipulate the symbiosis experimentally. Molecular and genetic tools have been developed for V. fischeri, and a large expressed sequence tag (EST) database is available for the host symbiotic tissues. Additionally, comparisons between light organ form and function to those of the eye can be made. Both types of tissue interact with light, but have divergent embryonic development. As such, they offer an opportunity to study the molecular basis for the evolution of morphological novelties.

Publisher

Cold Spring Harbor Laboratory

Subject

General Biochemistry, Genetics and Molecular Biology

Reference35 articles.

1. Low tide and the burying behavior of Euprymna scolopes (Cephalopoda: Sepiolidae);Anderson;West Soc Malacol Annu Rep,1997

2. Escape responses of Euprymna scolopes Berry, 1911 (Cephalopoda: Sepiolidae);Anderson;J Moll Stud,1996

3. The burying behavior of the sepiolid squid Euprymna scolopes Berry, 1913 (Cephalopoda: Sepiolidae);Anderson;West Soc Malacol Annu Rep,2002

4. Embryonic development and post-hatching survival of the sepiolid squid Euprymna scolopes under laboratory conditions;Arnold;Veliger,1972

5. HOX genes in the sepiolid squid Euprymna scolopes: Implications for the evolution of complex body plans

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3