Learning to Fold RNAs in Linear Time

Author:

Rezaur Rahman Chowdhury F A,Zhang He,Huang Liang

Abstract

AbstractRNA secondary structure is helpful for understanding RNA’s functionality, thus accurate prediction systems are desired. Both thermodynamics-based models and machine learning-based models have been used in different prediction systems to solve this problem. Compared to thermodynamics-based models, machine learning-based models can address the inaccurate measurement of thermodynamic parameters due to experimental limitation. However, the existing methods for training machine learning-based models are still expensive because of their cubic-time inference cost. To overcome this, we present a linear-time machine learning-based folding system, using recently proposed approximate folding tool LinearFold as inference engine, and structured SVM (sSVM) as training algorithm. Furthermore, to remedy non-convergence of naive sSVM with inexact search inference, we introduce a max violation update strategy. The training speed of our system is 41× faster than CONTRAfold on a diverse dataset for one epoch, and 14× faster than MXfold on a dataset with longer sequences. With the learned parameters, our system improves the accuracy of LinearFold, and is also the most accurate system among selected folding tools, including CONTRAfold, Vienna RNAfold and MXfold.

Publisher

Cold Spring Harbor Laboratory

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3