Author:
Menelaou Evdokia,Kishore Sandeep,McLean David L.
Abstract
SUMMARYSpinal interneurons coordinate adjustments in the rhythm and pattern of locomotor movements. Two prevailing models predict that interneurons either share or hierarchically distribute control of these key parameters. Here, we have tested each model in the coordination of swimming in larval zebrafish by circumferential excitatory V2a and commissural inhibitory V0d interneurons. We define two types of V2a neuron based on morphology, electrophysiology and connectivity. Type I V2as primarily propagate and amplify rhythmic signals biased to interneurons, while type II V2as primarily segregate and expedite patterning signals biased to motor neurons. Distributed control arises by differences in the likelihood of connections within types and the relative weights of connections between them, but not by a strict anatomical hierarchy. Heterogeneity among V0d neurons supports a similar functional distinction. Our findings provide a hybrid conceptual framework to better understand the origins of rhythm and pattern control in the spinal cord.
Publisher
Cold Spring Harbor Laboratory
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献