Optical Coherence Tomography Reveals Self-Organizing Di-Fork Architecture of Mice Cutaneous Scars

Author:

Ghosh BiswajoyORCID,Mandal Mousumi,Mitra Pabitra,Chatterjee Jyotirmoy

Abstract

AbstractScientific studies report crucial impacts of biomechanical effectors to modulate wound healing either by scarring or regeneration. Further, the biological decision to predominantly favor the former is still cryptic. Real-time visualization of biomechanical manifestations in situ in scarring is hence necessary. Endorsed by nanostructural testing, synthetic phantom analysis, and computational simulations, we found strong mechanobiological correlates for Swept Source Optical Coherence Tomography (SS-OCT) speckles in mice cutaneous repair (full-thickness) up to 10 months. The theoretical basis of the optomechanics to provide insights into scar form-factor and evolution is proposed. Optomechanical changes have been considered as the resultant of intrinsic (e.g. fiber elastic modulus) and gross tissue mechanics (extracellular matrix (ECM)) in maturing scars. Non-invasive optomechanics supported with microscopic findings reveal scar’s cross-sectional self-organizing di-fork architecture. Dual-compartment heterogeneity of di-fork exhibits stress-evading features with a dichotomy in inhabitant cellular stress-fiber distributions. This differential interactivity of scar with adjoining tissues reflects its architectural intelligence to compensate tissue loss (hypodermis/muscle) by assembling into a di-fork. Gradual establishment of baseline shifted lasting mechanobiological steady-state, later in scarring, expose scar as an alternate stable state within the skin.Significance StatementWound repair in mammals, predominantly culminates into function compromising scar that is occasionally fatal in vital organs. How the biological system often adopts scarring over a restorative regeneration is yet a conundrum. Wound and ambient mechanics play a pivotal role in deciding the healing fate. SS-OCT is hence demonstrated here as a non-invasive window to such mechanical manifestations during skin wound healing. This exposed gradual emergence of temporally maintained and stress-resilient di-fork architecture of the scar with differential neighborhood interfaces. Accommodation of such an alternate self-organizing steady-state of scar sheds light on its sustenance and paradoxical selection.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3