Abstract
ABSTRACTAnimals integrate external cues with information about internal conditions such as metabolic state to execute the appropriate behavioral and developmental decisions. Information about food quality and quantity is assessed by the intestine and transmitted to modulate neuronal functions via mechanisms that are not fully understood. The conserved Target of Rapamycin complex 2 (TORC2) controls multiple processes in response to cellular stressors and growth factors. Here we show that TORC2 coordinates larval development and adult behaviors in response to environmental cues and feeding state in the bacterivorous nematode C. elegans. During development, pheromone, bacterial food, and temperature regulate expression of the daf-7 TGF-β and daf-28 insulin-like peptide in sensory neurons to promote a binary decision between reproductive growth and entry into the alternate dauer larval stage. We find that TORC2 acts in the intestine to regulate neuronal expression of both daf-7 and daf-28, which together reflect bacterial-diet dependent feeding status, thus providing a mechanism for integration of food signals with external cues in the regulation of neuroendocrine gene expression. In the adult, TORC2 similarly acts in the intestine to modulate food-regulated foraging behaviors via the PDFR-1 neuropeptide receptor. We also demonstrate that genetic variation affects food-dependent larval and adult phenotypes, and identify quantitative trait loci (QTL) associated with these traits.Together, these results suggest that TORC2 acts as a hub for communication of feeding state information from the gut to the brain, thereby contributing to modulation of neuronal function by internal state.AUTHOR SUMMARYDecision-making in all animals, including humans, involves weighing available information about the external environment as well as the animals’ internal conditions. Information about the environment is obtained via the sensory nervous system, whereas internal state can be assessed via cues such as levels of hormones or nutrients. How multiple external and internal inputs are processed in the nervous system to drive behavior or development is not fully understood. In this study, we examine how the nematode C. elegans integrates dietary information received by the gut with environmental signals to alter nervous system function. We have found that a signaling complex, called TORC2, acts in the gut to relay nutrition signals to alter hormonal signaling by the nervous system in C. elegans. Altered neuronal signaling in turn affects a food-dependent binary developmental decision in larvae, as well as food-dependent foraging behaviors in adults. Our results provide a mechanism by which animals prioritize specific signals such as feeding status to appropriately alter their development and/or behavior.
Publisher
Cold Spring Harbor Laboratory