Spatially periodic activation patterns of retrosplenial cortex encode route sub-spaces and distance travelled

Author:

Alexander Andrew S.,Nitz Douglas A.

Abstract

AbstractTraversal of a complicated route is often facilitated by considering it as a set of related sub-spaces. Such compartmentalization processes could occur within retrosplenial cortex, a structure whose neurons simultaneously encode position within routes and other spatial coordinate systems. Here, retrosplenial cortex neurons were recorded as rats traversed a track having recurrent structure at multiple scales. Consistent with a major role in compartmentalization of complex routes, individual RSC neurons exhibited periodic activation patterns that repeated across route segments having the same shape. Concurrently, a larger population of RSC neurons exhibited single-cycle periodicity over the full route, effectively defining a framework for encoding of sub-route positions relative to the whole. The same population simultaneously provides a novel metric for distance from each route position to all others. Together, the findings implicate retrosplenial cortex in the extraction of path sub-spaces, the encoding of their spatial relationships to each other, and path integration.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3